浮力知识测定物质密度的思考

发布时间:2025-01-17     作者: 案例展示

 

  浮力的知识是初中物理力学的综合,它是平衡力、液体的压力和压强、物质的密度和质量等知识的综合,是中考的一个重要考点,特别是浮力与物质密度的测定的结合,它不仅能考查学生灵活运用知识的能力,而且能拓展学生实验设计和操作能力,本文将对浮力知识测量物质密度的方法和技巧进行分析。

  我们知道计算浮力的方法有三个:称重法(F浮=G-F);阿基米德原理(F浮=G排液=液gV排);平衡法(漂浮与悬浮时F浮=G)。阿基米德原理是计算浮力普遍适用的方法,而称重法与平衡法都有一定的局限性,称重法主要用在放入液体中下沉的物体(即所谓的“沉体”),平衡法主要使用在于漂浮的物体(即所谓的“浮体”),下面我们从“沉体”和“浮体”两方面来讨论测物质密度的特点。

  例1某弹簧测力计下面挂玻璃球时示数为4N,当玻璃球浸没在水中时示数为2N,当玻璃球浸没在某液体中时示数为3N,则玻璃球和某液体的密度分别为多少?

  分析:玻璃的密度=m/V,由于玻璃球在水中下沉而浸没在水中,所以排开水的体积就是玻璃的体积,而排开水的体积能够最终靠水中的浮力来考虑,对于在水中下沉的玻璃球,它的浮力可通过弹簧测力计通过称重法来测量,同时弹簧测力计还测量了玻璃球的重力从而得到它的质量,这样玻璃球的密度就能够得到。同样液体的密度可通过阿基米德原理,通过玻璃球在液体中的浮力来考虑,浸没在液体中的玻璃球的浮力也能够最终靠称重法来计算,排开液体的体积就是排开水的体积。

  从例1的解析不难发现:利用“沉体”测物质密度重要的工具是弹簧测力计,特点是“沉体”排开液体的体积等于物体的体积。而且通过这一个例题发现:弹簧测力计结合某个“沉体”可以改装成测液体密度的密度计。根据例一,弹簧测力计结合玻璃球可得如图的密度计:2N处对应水的密度1000kg/m3;3N处对应液体密度为500kg/m3;4N是空气中的读数,相当于浸没在密度为0的液体中,所以此处对应液体的密度为0kg/m3,即是密度计的零刻度;而0N时弹簧测力计对玻璃球没有拉力,玻璃球相当于悬浮在液体中,该处对应的液体密度等于玻璃球的密度2000kg/m3。而且它的刻度是均匀的,测量范围是0~2000kg/m3,从上到下为从大到小,零刻度在下面,最小刻度为100kg/m3,依据这一些数据当弹簧测力计下的玻璃球浸没在某种液体中可以直接读出液体的密度,如图指针在箭头位置,则液体的密度可直接读出为1200kg/m3。

  例2现有一块长方体小木块,一杯牛奶,如何利用浮力知识测量木块和牛奶的密度?

  只要液已知(常选用水),V排测出(常用量筒)可得到木块的质量,而用细针让木块浸没在量筒的水中,能够获得木块的体积。

  同样测出木块的质量后,再用量筒测出木块排开牛奶的体积就可得到牛奶的密度。

  从例2不难发现:利用“浮体”测密度主要工具为量筒或量杯,“浮体”的重力等于“浮体”受到的浮力是解决这类问题的关键。如果“浮体”是一个规则的物体,测量密度更方便:只须烧杯、水、刻度尺和待测液体不需要量筒。过程如下图:

  用刻度尺测出规则“浮体”的长度L及投入水中后露出水面的高度h(如上图),则“浮体”的密度为。

  若投入某液体中露出液面的高度为h(如上图),那么液体的密度为。

  由上题得到启示:在规则的“浮体”侧面刻上均匀的刻度,可以使它成为一个密度计,刻度能这样来确定:将它放入水中漂浮,如果水面下有如图的6格,则此处记为水的密度1000kg/m3,

  分析:要测玻璃的密度,必须测出小玻璃试管的质量和它具有的玻璃的体积。当小玻璃试管下沉在量筒的水中时可以测出它的体积;小玻璃试管的质量能够最终靠测量它的重力获得,由于小玻璃试管漂浮在水面上时它的重力就等于浮力,所以只要用量筒测量它漂浮时排开水的体积,就可以得到它的质量。

  由例3可以更进一步思考:利用量筒、小玻璃管、足量的水、细线,如何测量细沙的密度?

  分析:细沙的密度=m/V,细沙的质量由于没有天平,可以经过测量漂浮时的浮力来得到,细沙要漂浮必须将它放到小玻璃管中;对应的体积可让小试管中的细沙下沉到量筒中的水中获得。实验过程如下图:

  ③将细沙从小玻璃管倒入量筒的水中,让小玻璃管仍漂浮在水面上(如上图),记下此时水面刻度V2

  测定物质的密度是初中物理一个重要实验,基本方法为用天平和量筒这两种仪器,而此实验的拓宽是往往只给一种仪器,甚至一种也没有,而代以其他实验器材,因此寻找合适的代换是关键,从上面的例题可发现:利用浮力的知识进行密度的测量时,浮力和密度的基本知识是出发点,利用物体在液体中的状态,抓住“浮体”F浮=G和“沉体”V排=V物的特点进行代换,通过一定的设计就能够达到密度的测量、仪器的改装。此类实验不仅注重学生基本操作技能的掌握,而且也注重提高学生实验设计能力和对知识的综合应用能力,培养了学生创新意识和创造能力,使学生真正成为学习的主人,实现从“应试教育”向“素质教育”转变。